商业智能(BI)对零售企业的影响2014-07

零售企业在经营过程中产生了海量信息,这些信息蕴藏了丰富的经营视点和市场规律。怎样有效地利用这些宝贵的信息,让它们更好地为企业经营服务,成为了零售企业的一个迫切愿望和现实难点。

售企业在经营过程中产生了海量的信息,这些信息蕴藏了丰富的经营视点和市场规律。怎样有效地利用这些宝贵的信息,让它们更好地为企业经营服务,成为了零售企业的一个迫切愿望和现实难点。

目前,由于信息系统老化,许多企业的信息系统功能还单纯停留在普通的分析数据上,不能提供多视角的、有渗透力的数据,更不能提供具有预测性的、潜在的市场信息。而商业智能的出现在一定程度上弥补了一般零售业系统在分析上的不足。

BI商业智能最常见的应用就是辅助建立信息中心,通过BI来产生各种工作报表和分析报表。常见的分析有:

销售分析:主要分析各项销售指标,例如毛利、毛利率、坪效、交叉比、销进比、盈利能力、周转率、同比、环比等等;而分析维又可从管理架构、类别品牌、日期、时段等角度观察,这些分析维又采用多级钻取,从而获得相当透彻的分析思路;同时根据海量数据产生预测信息、报警信息等分析数据;还可根据各种销售指标产生新的透视表,例如最常见的ABC分类表、商品敏感分类表等。

商品分析:商品分析的主要数据来自销售数据和商品基础数据,从而产生以分析结构为主线的分析思路。主要分析数据有商品的类别结构、品牌结构、价格结构、毛利结构、结算方式结构、产地结构等,从而产生商品广度、商品深度、商品淘汰率、商品引进率、商品置换率、重点商品、畅销商品、滞销商品、季节商品等多种指标。通过对这些指标的分析来指导企业商品结构的调整,加强所营商品的竞争能力和合理配置。

顾客分析:顾客分析主要是指对顾客群体的购买行为的分析。例如,如果将顾客简单地分成富人和穷人,那么什么人是富人,什么人是穷人呢?实行会员卡制的企业可以通过会员登记的月收入来区分。没有推行会员卡的,可通过小票每单金额来假设。比如大于100元的我们认为是富人,小于100元的我们认为是穷人。现在老总需要知道很多事情了,例如,富人和穷人各喜欢什么样的商品;富人和穷人的购物时间各是什么时候;自己的商圈里是富人多还是穷人多;富人给商场做出的贡献大还是穷人做出的贡献大;富人和穷人各喜欢用什么方式来支付等。